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REVERSED-PHASE RETENTION OF NUCLEIC A C I D  COMPONENTS 
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University of  *ode I s l and  
Kingston, %ode I s l and  02881 

*Present Address: 
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I .  INTRODUCTION 

A. Background 

The f a c t o r s  which a f f e c t  the phys io logica l  balance of  nucleo- 

t i d e s ,  nucleosides and bases  occupy many a reas  of  biochemical, b io-  

medical and gene t i c  research .  These components play c e n t r a l  r o l e s  

i n  the  formation and func t ion  o f  the nuc le i c  ac ids .  In  add i t ion ,  

many of t h e  pur ines  and pyrimidines serve  a s  r egu la to r s  and/or 

messengers i n  phys io logica l  processes.  Thus, analogs of t hese  com- 

ponents have been found use fu l  as chemotherapeutic and a n t i b i o t i c  

agents .  

The pur ines  and pyrimidines found wi th in  a phys io logica l  mat r ix  

can o r i g i n a t e  from de novo o r  salvage pathways, enzyme ca ta lyzed  

degradation o f  t i s s u e s ,  nuc le i c  a c i d  catabolism and d i e t a r y  sources. 

Depending on the  matrix,  these  compounds can be found i n  micro- 

molar t o  femtomolar concent ra t ions .  Often, t he  l e v e l s  o f  t he  nuc- 

leos ides ,  nuc leo t ides  and bases  can be  r e l a t e d  t o  normal metabolic 

s t a t e s  o r  t o  abnormal i t ies  caused by d i sease .  

d i seases ,  t h e  methylated nuc le i c  ac id  components are of p a r t i c u l a r  

i n t e r e s t .  *he methylated bases  occur mainly i n  tRNA and t o  a les- 

ser e x t e n t  i n  rRNA. Unlike t h e  major nuc le ic  ac id  components, 

For the  neop las t i c  
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178 ASSENZA AND BROWN 

there appears t o  be no mechanisms t o  recycle the methylated com- 

pounds. Thus, a l t e ra t ions  i n  the excreted l eve l s  of the minor com- 

ponents a re  believed t o  r e f l e c t  the extent of M A  modification and 

metabolism i n  p ro l i f e ra t ive  c e l l s .  

The importance of the purine and pyrimidine compounds made es- 

s e n t i a l  the development of r e l i ab le  ana ly t i ca l  techniques f o r  rapid 

and sensi t ive determinations i n  complex matrices. While many dif-  

ferent  methods have been applied,  the advent of high-performance 

l iquid chromatography (HPLC) most great ly  f a c i l i t a t e d  routine sepa- 

ra t ion and measurement of nucleic acid components i n  biological 

materials.  

Since the introduction of HPLC ( 1 r 2 ) ,  the technique has had an 

explosive growth i n  its application t o  assays of ionic ,  polar,  non- 

v o l a t i l e  and thermally l a b i l e  compounds. In addition, the wide 

var ie ty  of chromatographic modes made possible separations which 

previously required long analysis  t i m e s ,  extensive purif icat ion and 

laborious der ivat izat ion procedures . 

ponents can be t raced t o  the research of Cohn (4). 

were obtained with polystyrene-divinylbenzene ion-exchange resins  

(100-p)  packed i n  open-columns. W i t h  these ear ly  methods, chroma- 

tographic capaci t ies  were high; however, long analysis  times, poor 

e f f i c i enc ie s  and solute  degradation were some of the major draw- 

backs. 

( 3 )  

The l iqu id  chromatographic determination of nucleic acid com- 

Separations 

I n  an attempt t o  overcome the l imitat ions associated with the 

open-column systems, p e l l i c u l a r  packings were developed and 

applied to purine and pyrimidine separation by Horvath and Lipsky 

(5 ) ,  Kirkland (6), Brown (7) and others  ( 8 1 9 ) .  

ings were prepared by coating the resin around an i n e r t  g l a s s  o r  

s i l i c a  bead usually 40-70 )nn i n  diameter. 

the p e l l i c u l a r  packings was an increase i n  eff ic iency.  In  addition, 

the r i g i d i t y  of these so l id  core p a r t i c l e s  made possible the use of 

high flow-rates. However, these s ta t ionary phases were compromised 

by low capacity and i n s t a b i l i t y  since the outer s h e l l  could be 

s t r iped  from the support. 

The p e l l i c u l a r  pack- 

A notable advantage of 
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REVERSEWPHASE RETENTION 179 

Following t h e  suggestion by Stewart and Perry (lo) , the problem 

of column i n s t a b i l i t y  w a s  resolved by chemically bonding t h e  m a t e r -  

i a l  t o  t he  s i l i c a  support .  Shor t ly  t h e r e a f t e r ,  t he  use of bonded 

s t a t iona ry  phases i n  HPLC gained widespread acceptance mainly 

through the  research o f  Halasz and Sebestian (11), Kirkland (12) 

and o the r s .  

The chronomatographic systems cu r ren t ly  ava i l ab le  were made 

poss ib l e  by the  development o f  micropar t icu la te  chemically bonded 

s t a t i o n a r y  phases (13). The d i s t i n c t  f ea tu re  of t he  modern day 

packings i s  the use of t o t a l l y  porous spher ica l  o r  i r r e g u l a r l y  

shaped s i l i c a  p a r t i c l e s  3-, 5- o r  10-pm i n  diameter. In  comparison 

with the  p e l l i c u l a r  packings, the s i l i c a  micropar t ic les  have grea t -  

er  capac i t i e s  due t o  h igher  sur face  a rea .  In  addi t ion ,  e f f i c i en -  

cies a r e  v a s t l y  improved s ince  the  a r e a  i n  which t h e  mobile phase 

could s tagnate  i s  reduced. While the  use of such s m a l l  p a r t i c l e s  

would have a l s o  been des i r ab le  i n  the  e a r l y  days of HPLC, methods 

were not  ava i l ab le  t o  obta in  the  s i l i c e o u s  mater ia l  wi th in  a un i -  

form s i z e  d i s t r ibu t ion .  Moreoever, ne i the r  the  chromatographic 

instrumentation nor the  technology i n  packing columns w a s  suf- 

f i c i e n t l y  developed. 

I n i t i a l l y ,  many researchers  f e l t  t h a t  only the  ion-exchange 

HPLC methods would g ive  adequate separa t ion  o f  nuc le ic  a c i d  com- 

ponents (14-16) . 
shoved g r e a t e r  promise f o r  pur ine  and pyrimidine determinations 

(17,18). In  f a c t ,  s ince  the  advent o f  t he  micropar t icu la te  chemi- 

c a l l y  bonded packings, RPLC has  had a spec tacular  ascent  and has 

emerged as the  most widely accepted type of l i q u i d  chromatography 
(17-24) . 

However, the  reversed-phase mode of HPLC (RPLC) 

Separations of nucleosides,  nucleotides and bases  a re  
r ead i ly  obtained using l a rge ly  aqueous e luen t s  (17-19) o r  w i t h  ion- 

(20-22) pa i r ing  agents 

The popular i ty  o f  RPLC is due t o  t h e  many advantages o f f e red  

over the o the r  chromatographic modes. Among the  advantages a re :  

1. Operational s impl i c i ty  and ease of use; 

2. High e f f i c i ency ,  r ep roduc ib i l i t y  and sample turnover;  

3. Column s t a b i l i t y  and long l i f e t imes ;  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
8
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



180 ASSENZA AND BROWN 

4 .  Simultaneous separation of a broad scope of closely related 

and vast ly  d i f f e ren t  compounds, including compounds with a 

wide range of p o l a r i t i e s ,  i on ic  states and molecular weights; 

5 .  The var ie ty  of d i f f e r e n t  types of reversed-phases commer- 

c i a l l y  available,  a s  w e l l  a s  those which can be prepared in- 

house; 

6. The a b i l i t y  t o  manipulate the mobile phase t o  t a i l o r  separa- 

t ions fo r  compounds with unique features;  

7. The ease i n  which separations a re  optimized; 

8. The a b i l i t y  t o  determine physicochemical propert ies  such a s  

hydrophobicity, dissociat ion constants and complex-formation 

constants. 

The l a t t e r  f i v e  advantages a re  perhaps the most s ign i f i can t  as- 

pects of WLC. This a r t i c l e  w i l l  review these f ac to r s  i n  terms of 

t h e i r  re la t ionships  t o  purine and pyrimidine separations.  In addi- 

t ion,  some applications w i l l  be presented. For more detai led 

coverage of spec i f i c  applications and associated procedures in- 

volved i n  the analysis  of complex matrices, the recent publications 

by Brown and co-workers (25-28) are suggested. 

by Horvath (24 ‘29 ) ,  Karger(23) and Cooke(30) on RPLC are  a l s o  sug- 

gested. For those interested i n  the evolution of l i qu id  chromato- 

graphy, Ettre(31) has given a h i s t o r i c a l  overview. 

extensive coverage of recent l i t e r a t u r e  pertaining t o  l i qu id  chroma- 

tography by Majors, e t  a l ( 3 2 )  is strongly recommended. 

The general reviews 

Moreover, the 

B. Purine and Pyrimidine Structures 

The basic  s t ructures  and numbering of the purine and pyrimidine 

r ings a re  shown i n  Figure 1. These nitrogen heterocycles a re  re- 

ferred t o  a s  the base o r  aglycone; the base is the primary s t ruc-  

t u re  from which the nucleoside o r  nucleotide i s  derived. The term 

nucleoside is  used fo r  the compounds which have a ribosyl substi tu- 

en t  on the base s t ruc tu re  (Figure 2 ) .  A nucleotide (Figure 3) is a 

nucleoside with one, two o r  three phosphate groups i n  place of the 

hydroxyl subst i tuents  on the ribosyl moiety. In addition, it is 

possible €or many of these compounds to e x i s t  i n  several  tautomeric 

forms. The environment i n  which the compound is  present a s  well  a s  
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REVERSED-PHASE RETENTION 181 

F I G U R E  1 

St ruc tu re  and systematic numbering of the  pyrimidine base  (A) 
and the pur ine  base (B). 

GUANOSI NE ADENOSINE 

0 

PYRIMIDINE 

OH OH OH OH 

CYTlDlNE 5-METHYLURIDINE 

F I G U R E  2 

Some s t r u c t u r e s  of pur ine  and pyrimidine nuc leos ides .  
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182 ASSENZA AND BROWN 

LACTIM LACTAM 

FIGURE 3 

Adenosine 5'-monophosphate showing the three l eve l s  of s t ructure .  

neighboring subst i tuents  d i c t a t e  which tautomeric form predominates; 

an example of the lactim-lactam structures  of hypoxanthine a r e  

shown (Figure 4 ) .  I n  most cases, the lactam and amino form pre- 

dominate i n  neutral  aqueous solut ions.  

Nomenclature problems abound i n  the description of the purines 

and pyrimidines since many a re  known by systematic, biochemical and 

t r i v i a l  names; thus complicating a general presentation of the o r i -  

ginal  reference material .  Furthermore, there e x i s t s  a var ie ty  of 

symbols and abbreviations which can be used t o  represent a s ingle  

compound; t h i s  i s  especial ly  true fo r  those compounds with many 

subst i tuents .  Therefore, i n  an attempt t o  f a c i l i t a t e  the presenta- 

t i on ,  a s ingle  format was adopted and used throughout. The format 

is based on the IUPAC-IUB guidelines (33)  ; examples of names and sym- 

bols  for  the nucleic acid components a re  given i n  T a b l e  I. 

C. Physical Properties 

For the chromatographic analysis of the nucleic acid fragments, 

ionization constants and spec t r a l  properties a re  useful ( T a b l e  11). 

A s  a guide i n  the development of chromatographic conditions, the 

extent of dissociat ion expected i n  any pa r t i cu la r  e luent  can be 

used t o  predict  re tent ion and/or e lut ion order.  In addition, iden- 

t i f i c a t i o n s  of the nucleosides, nucleotides and bases are f a c i l i -  

t a t ed  by t h e i r  absorption cha rac t e r i s t i c s  a t  several  wavelengths o r  

pH values. 
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REVERSED-PHASE RETENTION 183 

0 
H 

I 
H2C-O-P-OH 

OH -BAsE-b 
HO OH 

-NUCLEOSlDE 

-NUCLEOTlDE 

FIGURE 4 

Tautomeric s t r u c t u r e s  of hypoxanthine. 

11. REVERSED-PHASE L I Q U I D  CHROMATOGRAPHY 

A. Separation Mechanism 

The mechanism of separa t ion  i n  RF'LC i s  no t  wel l  understood and 

i s  the  sub jec t  of ex tens ive  research. 

(34) , absorp t ion(35) ,  d i spers ive  i n t e r a ~ t i o n ' ~ ~ ) ,  compulsory absorp- 

t i ~ n ' ~ ~ ) ,  solvophobic in te rac t ion(40r41)  and 

mixed solvophob ic- s i l anoph i l  i c  in t e rac t ion  (42 

posed. 

un i f ied  theory o f  r e t en t ion  i n  reversed-phase systems has ye t  t o  be 

developed . 

Models based on p a r t i t i o n  

3, have been pro- 

While c e r t a i n  f e a t u r e s  tend t o  overlap i n  these  models, a 

(44) 

From the  s t u d i e s  of reversed-phase r e t en t ion ,  it is apparent 

t h a t  many complex f a c t o r s  a r e  involved. I t  i s  genera l ly  acknow- 

ledged that the  in t e rac t ions  between the bulk mobile phase and the  

so lu t e  are predominant i n  the  mechanism of r e t en t ion  with reversed- 

phase systems. However, the  r o l e  of the  s t a t i o n a r y  phase i s  less 

ce r t a in .  While so lu te -s ta t ionary  phase in t e rac t ions  a re  l a rge ly  

seen t o  be secondary t o  the  solute-mobile phase in t e rac t ions ,  in- 
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184 ASSENZA AND BROWN 

TABLE I 

NAMES AND ABBREVIATIONS FOR NUCLEIC A C I D  COMPONENTS 

Bases 

Uracil (Ura) 
Thymine (Thy) 

Guanine (Gua) 

Nucleosidesa 

Uridine (Urd, U) 
Thymidine (Thd, T) 
Adenosine (Ado, A) 
Guanosine (Guo, G) 

Nucle o t i de  s 

Uridine 5'-mnophosphate (W, pU) 
Uridine 5'-diphosphate (UDP, ppU) 

Uridine 5'-triphosphate (UTP, pppU) 

Examples of 2 l-Deoxyribonucleosidesa 

Adenine (Ade) 

b 

Deoxyuridine (dUrd, dU) 
Deoxythymidine (dThd, dT) 

Example of 2 I-Deoxyribonucleotide b 

Deoxycytidine 5'-monophosphate (dCMP) 

aThe three le t ter  abbreviations a re  associated with topics of chemi- 
cal  change; the capi ta l  le t ter  symbols imply the source was a nuc- 
l e i c  acid. 

bThe posit ion of the phosphate group can be indicated with the pre- 
f i x  2', 3 ' ,  o r  5' for  simple nucleotides and by 2 ' ,  3'-  and 3 ' ,  5 ' -  
fo r  cycl ic  nucleotides; the lower case p t o  the l e f t  indicates  a 
5'-phosphate and t o  the r i g h t  a 3'-phosphate fo r  the oligonucleo- 
tides. 

stances where the s ta t ionary phase contributes s ignif icant ly  t o  re- 

tention have been noted. I n  addition, the role  of solute  s t ruc tu re  

i s  not well defined; frequently models of the retent ion process de- 

rived fran the observed behavior of one c l a s s  of compounds f a i l  t o  

describe the retent ion of another c l a s s  of compounds. In particular,  
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186 ASSENZA AND BROWN 

t h i s  can be seen when the retention of purines is compared t o  non- 

polar o r  moderately polar hydrocarbons 

1. Solvophobic Theory i n  RPIC 

The solute and mobile phase interactions which a re  seen primary-  

t o  govern reversed-phase retention a re  ascribed t o  hvdrophobic 

(45) . 

ly 

o r  solvophobic e f fec ts  (40'41). The hydrophobic e f fec t  is an entro- 

pically driven phenomenon which accounts fo r  the clustering of non- 

polar solutes i n  water; the sa l ien t  feature is that the organizing 

force is based on repulsion by the solvent rather than an at t ract ion 

by the solutes.  

variant of hydrophobicity tha t  is  applicable t o  the eluents common- 

l y  used i n  RPLC and i n  principle employs accessible physico- 

chemical data. 

The solvophobic theory (46"48) is a generalized 

Horvath and co-workers (40r49)  have adapted the solvophobic 

theory to  describe the mobile phase generated select ivi ty  observed 

i n  reversed-phase systems. Within the framework of this model, the 

driving force for  retention is mainly due t o  an increase i n  the en- 

tropy of the mobile phase accompanying the t ransfer  of the solute 

from the l iquid phase to  the stationary phase. 

note that  the stationary phase is assumed to  play only a passive 

role i n  the retention mechanism; th i s  assumption is valid only when 

the nature of solute binding t o  the stationary phase is weak and 

nonspecific. 

It is  important t o  

The treatment of physicochemical phenomena underlying both 

ionized and nonionized solute retention i n  RPLC with the solvo- 

phobic theory has been given i n  de ta i l  (40t49)  . However, the theory 

on the influence of the solvent on the associations of nucleic acid 

components has not been fu l ly  developed. Investigations i n  t h i s  

direction have been made by Sinanoglu '46-48) : similar calculations, 
although differ ing i n  de ta i l s ,  were also aiven bv Pullman . (50) 

The reversible association of the solute with the reversed- 

phase i s  based on the thermodvnamic properties associated w i t h  the 

tendencv t o  minimize the s i t e  of cavi t ies  formed bv the solute 

molecules i n  the hydro-orqanic mobile phase; the interactions of 

the solute and the alkvl-chains of the stationary phase are be- 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
8
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



REVERSEIFPHASE RETENTION 187 

l i eved  to be pure ly  hydrophobic i n  na ture  and not  due t o  e l e c t r o -  

s ta t ic  o r  hydrogen bonding e f f e c t s .  Retention is  expressed i n  

terms of t he  o v e r a l l  s tandard  free energy change (AGT) a s soc ia t ed  

with the  t r a n s f e r  of  t h e  s o l u t e  from t h e  mobile phase t o  the 

s t a t i o n a r y  phase by 

I n  k' = I n  0 - AGT/RT (1) 

where k '  is  the  capac i ty  factor of  t h e  s o l u t e ,  0 is  the  phase- 

r a t i o  of the  column, R is the  g a s  cons tan t  and T i s  the tempera- 

t u re .  

The first is  involved with the  a s soc ia t ion  o f  t he  s o l u t e  and t h e  

alkyl-chain i n  the gas  phase, while t he  second corresponds wi th  the  

t r a n s f e r  of the  so lu t e ,  alkyl-chain and so lu t e - s t a t iona ry  phase 

complex ind iv idua l ly  i n t o  t h e  mobile phase. The second s t e p  

accounts f o r  t h e  f r e e  energy changes a r i s i n g  from t h e  formation of  

t he  cav i ty ,  as we l l  as t h e  ex ten t  of i n t e r a c t i o n s  wi th  so lven t  

molecules. 

The AGT term represents  t he  sum of t w o  free energy changes. 

For hydro-organic mobile phases, t he  solvophobic expression 

f o r  r e t en t ion  of  u d o n i z e d  s o l u t e s  i s  given by 

NAA + 4.836N1'3 (Ke-l)V2'3 
I n  kh = g + Y ( 2 )  

RT 

where k' i s  t h e  capac i ty  of them-ionized  s o l u t e ,  g i s  a cons tan t  

which l a r g e l y  accounts f o r  t h e  van d e r  Waals' con t r ibu t ion  t o  t h e  

f r e e  energy of  i n t e r a c t i o n  between so lven t  and s o l u t e ,  N is  Avo- 

gadro's number, AA i s  t h e  con tac t  su r f ace  area of  t h e  s o l u t e  wi th  

t h e  s t a t i o n a r y  phase, Ke i s  t h e  microscopic c a v i t y  f a c t o r ,  V i s  

t h e  mole volume of  t h e  e luen t ,  and y i s  t h e  e luen t  su r face  tension. 

This r e l a t i o n s h i p  r evea l s  t h a t  I n  k; is  l i n e a r l y  r e l a t e d  t o  sur- 

face  tens ion ,  a s  we l l  as t o  t h e  hydrocarbonaceous sur face  area. 

I n  add i t ion ,  t h e  su r face  tens ion  can be expressed a s  a func t ion  of  

i o n i c  s t r eng th  such t h a t  a p l o t  of I n  k '  versus  i o n i c  s t r eng th  

a l s o  y i e l d s  a s t r a i g h t  l i n e .  

0 

0 

For ionized s o l u t e s ,  t h e  r e l a t i o n s h i p  becomes more complex b u t  

can be given i n  a s impl i f i ed  form by 
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188 ASSENZA AND BROWN 

I n  k '  = a '  + b '  * f (w)  + c '  AA ( 3 )  

where k '  i s  t h e  c a p a c i t y  f a c t o r  o f  t h e  charged s o l u t e ,  f (w)  re- 

p r e s e n t s  t h e  e f f e c t  o f  s o l u t e  charge on t h e  i n t e r a c t i o n s  and a ' ,  

b '  and c '  are column and s o l v e n t  dependent parameters .  Under iso- 

crat ic  c o n d i t i o n s ,  t h i s  r e l a t i o n s h i p  p r e d i c t s  t h a t  a p l o t  o f  I n  

kk ( c o r r e c t e d  f o r  e lectrostat ic  e f f e c t s )  v e r s u s  hydrophobic s u r -  

f a c e  area y i e l d s  a s t r a i g h t  l i n e .  Moreover, t h e  slope o f  t h e  l i n e  

remains c o n s t a n t  when e l u e n t s  o f  d i f f e r e n t  pH b u t  o therwise  iden-  

t i ca l  composi t ion are used. 

2 .  Mixed-Mode I n t e r a c t i o n  

Recent ly ,  Horvath and co-workers ( 4 2 r 4 3 )  in t roduced  a dua l -  

b i n d i n g  concept  t o  account  f o r  s o l u t e s  which d e v i a t e  from t h e  sol- 

vophobic theory .  I n  a d d i t i o n  t o  solvophobic  f o r c e s ,  i n t e r a c t i o n s  

between the s o l u t e  and f r e e  s i l a n o l s  of t h e  reversed-phase are 

p o s s i b l e .  To denote  this behavior ,  t h e  a u t h o r s  used t h e  term 

' s i l a n o p h i l i c '  i n t e r a c t i o n .  Apparent ly ,  t h e  s i l a n o p h i l i c  i n t e r -  

a c t i o n s  are more l i k e l y  t o  occur  wi th  t h e  s h o r t  a lkyl -cha in  re- 

versed-phases t h a n  wi th  t h e  long a lkyl -cha in  phases  . 

_ _  e t  a1(51) expla ined  t h e  i n c r e a s e  i n  t h e  r e t e n t i o n  o f  n u c l e o t i d e s  

w i t h  i n c r e a s i n g  methanol c o n c e n t r a t i o n  t o  t h e  predominance o f  sil- 

a n o p h i l i c  i n t e r a c t i o n s .  However, under most chromatographic con- 

d i t i o n s ,  t h e  RPLC r e t e n t i o n  o f  nuc leos ides ,  n u c l e o t i d e s  and b a s e s  

can be  a t t r i b u t e d  mainly t o  solvophobic  f o r c e s .  

(45)  

Based on t h e  solvophobic-silanophilic model f o r  RPLC, Zakar ia ,  

B. S t ruc ture-Retent ion  R e l a t i o n s h i p s  

With t h e  solvophobic  theory ,  it is  p o s s i b l e  t o  p r e d i c t  r e t e n t i o n  
(52-54) based on s o l u t e  s t r u c t u r e  and physicochemical  c h a r a c t e r i s t i c s  

However, r e l a t i o n s h i p s  between t h e  s t r u c t u r e  of the n u c l e i c  a c i d  

components and t h e i r  reversed-phase chromatographic b e h a v i o r  have 

n o t  been e x t e n s i v e l y  s t u d i e d .  

t h e  r e l a t i o n s h i p s  between p u r i n e  and pyr imidine  s u b s t i t u e n t s  t o  re- 

versed-phase r e t e n t i o n .  These r e l a t i o n s h i p s  are as fol lows:  

Recent ly ,  Brown and Grushka (55) noted 

1. Any s u b s t i t u e n t  t h a t  causes  charge formation d e c r e a s e s  

k ' .  

2 .  Any s u b s t i t u e n t  t h a t  causes  a tau tomer ic  s h i f t  w i l l  a f f e c t  

k '  . 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
8
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



REVERSED-PHASE RETENTION 189 

3 .  Both group and p o s i t i o n  o f  s u b s t i t u e n t s  a f f e c t  k '  i n  t h e  

o r d e r  OH<H<NH2<NHR. Methyl groups approximately double t h e  

k '  va lue  o f  t h e  p a r e n t  compound. 

4. I n  nuc leos ides ,  t h e  a d d i t i o n  of t h e  r i b o s y l  group i n c r e a s e s  

k '  of t h e  comparable b a s e  s t r u c t u r e .  

5. I n  t h e  deoxyr ibonucleos ides ,  t h e  loss o f  the OH group i n  

t h e  2 I - p o s i t i o n  i n c r e a s e s  t h e  k' o v e r  t h a t  of t h e  r ibonucleo-  

s i d e .  

6 .  I n  n u c l e o t i d e s ,  l i n e a r  phosphate  groups d e c r e a s e  k ' ,  b u t  

the c y c l i c  phosphate  group i n c r e a s e s  k '  compared t o  t h a t  o f  t h e  

corresponding r i b o n u c l e o s i d e s .  

7. Based on t h e  energy of v e r t i c a l  b a s e  s t a c k i n g  i n  aqueous 

s o l u t i o n s ,  pyr imidines  e l u t e  b e f o r e  s i m i l a r i l y  s u b s t i t u t e d  

p u r i n e s .  

The p o s t u l a t i o n s  g iven  by  Brown and Grushka(55) w e r e  f u r t h e r  

e v a l u a t e d  by Assenza and Brown(56). 

group c o n t r i b u t i o n s  to  r e t e n t i o n  o f  a l a r g e  v a r i e t y  o f  p u r i n e  com- 

pounds were i n v e s t i g a t e d .  The q u a n t i t a t i v e  de te rmina t ion  o f  t h e  

f u n c t i o n a l  group e f f e c t s  w a s  based  on extra-thermodynamic l i n e a r  

free energy r e l a t i o n s h i p s  and is  e q u i v a l e n t  t o  o t h e r  s u b s t i t u e n t  

parameters  (52-54). 

terms c a l c u l a t e d  from t h e  observed r e t e n t i o n  o f  t h e  p u r i n e s  w i t h  

s e v e r a l  reversed-phases .  As can b e  seen  from T a b l e  111, the group 

increment  terms determined w i t h  columns A and B (both  oc tadecyl -  

s i l i ca)  follow t h e  t r e n d s  noted  by  Brown and G r u ~ h k a " ~ ) .  

column D ( t r i m e t h y l s i l i c a )  i s  seen  t o  have d i f f e r e n t  i n t e r a c t i o n s  

w i t h  t h e  s u b s t i t u e n t s .  

I n  t h i s  work, the f u n c t i o n a l  

Table  I11 shows t h e  q u a n t i f i e d  group increment  

However, 

The l a c k  of c o r r e l a t i o n  i n  s e l e c t i v i t y  between t h e  reversed-  

phases  w a s  used by Assenza and Brown(56) t o  demonstrate  a method 

i n  p r e d i c t i n g  t h e  s t r u c t u r e  o f  unknown p u r i n e  compounds. Capac i ty  

f a c t o r s  o b t a i n e d  on two d i f f e r e n t  reversed-phases  w e r e  compared 

w i t h  t h e  t a b u l a t e d  group terms i n  such a way t o  g i v e  a list of 

possible s u b s t i t u e n t s  whose sum equaled  t h e  observed  values.. 

C. E f f e c t  o f  Chromatographic Parameters  

During t h e  p a s t  decade many a t t e m p t s  have been made t o  des- 

cribe and p r e d i c t  s o l u t e  r e t e n t i o n  of RPLC. In  g e n e r a l ,  t h e  app- 
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TABLE I11 

CALCULATED T .  VALUES 
3 

ASSENZA AND BROWN 

Column Compounds 
P o s i t i o n  S u b s t i t u e n t  A B C D Used 

R1 Methyl 0.890 2.34 1.23 0.892 ml-Hyp 

R2 Ox0 0.220 -0.294 0.0520 -0.663 Xan 
Amino 0.110 -0.477 0.0160 0.440 G W  
Methyl 0.820 0.724 1.10 0.690 m2-Ade 
Me t h y  lamino 1.18 1.32 1.03 0.933 m G 
Dimethylamino 2.45 3.42 2.09 1.97 n$IG 

R 3  Methyl 1.70 2.17 1.39 0.875 m3-Xan 

R6 Ox0 -0.750 -1.91 -0.954 -0.795 Hyp 
Amino 0.320 -0,127 0.264 0.257 A d e  
Methyl 1.14 1.26 1.18 0.777 mg-Pur 
M e  t h y  lamino 2.20 3.02 1.23 1.42 mg-Ade 
Dimethylamino 3.41 4.68 2.19 2.62 mE-Ade 

Imino' -2.03 -4.04 -1.33 -0.595 mi-Ade 

R7 Methyl (base) 0.790 0.656 1.44 1.07 m7-Gua 
Methyl -0.670 -1.78 -0.460 0.460 m7-G 

m i 0 1  1.28 1.48 -0.538 3.20 SHij-PUr 

R8 O X 0  -0.802 -1.99 -1.10 -1.08 UA 

1.19 1.02 0.870 0.109 1 
3 

R9 R i b o  
d-Ribo 1 .31  1.45 1.31 0 .561  d l  
c-Ribo 1.56 0.940 0.680 -0.584 cl  
mp-Ribo -0.740 -1.89 -1.47 -1.92 AMP 
dp-Rib0 -1.24 -2.72 -3.51 -3.10 ADP 
t p - R i b 0  -2.74 -5.22 -3.73 -3.36 ATP 

Pur ine  1.92 2.54 2.15 0.933 P u r i n e  

1 S u b s t i t u e n t  is i n  the t h i o n e  form (Lactam). 

2 Represents  p r o t o n a t e d  form. 

3 Ribo-B-ribofuranosyl,  2 ' -deoxr ibofuranosyl ,  3 ' ,  5 ' -cyc l imonophos-  
p h a t e ,  5'-monophosphate, 5 ' -diphosphate ,  and  5 ' - t r i p h o s p h a t e ,  res- 
p e c t i v e l y .  

4 See t e x t  f o r  e x p l a n a t i o n  
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REVERSED-PHASE RETENTION 191 

roach has e i t h e r  been empirical o r  thermodynamically based. In the 

empirical approach, re tent ion data f o r  a set of solutes  a r e  obtain- 

ed over a var ie ty  of chromatographic conditions and a re  used t o  de- 

r ive val id  re la t ionships .  W i t h  the thermodynamic approach, a theo- 

r e t i c a l  description is  developed based on per t inent  fundamental 

thermodynamic o r  physicochemical parameters; an example of  t h i s  is  

the solvophobic theory. A major problem i n  the empirical descrip- 

t i on  is  the i n a b i l i t y  t o  d i r e c t l y  apply the derived constants t o  

other phase systems o r  solutes;  i n  addition, these relat ionships  

may be val id  only over a small range of conditions. The major 

drawback t o  the theo re t i ca l  description i s  t h a t  no simple func- 

t i ons  with rigorous thermodynamic b a s i s  e x i s t  between the solute  

and retent ion.  However, both methods have made possible the 

evaluation, optimization and comparison of d i f f e r e n t  chromatographic 

systems; a s  w e l l  a s  t o  formulate new direct ions t o  unravel the 

chromatographic process. 

1. Stationary Phase Effects  

The packingsused i n  RPLC are  prepared by chemically bonding 

hydrocarbon chains of various lengths and configurations t o  the 

microparticulate s i l i c a  support (13'37'57'58). In addition, the 

reversed-phases can be categorized a s  e i t h e r  a 'brush' o r  'bulk' 

packing (Figure 5 ) .  The brush-type phases r e s u l t  from t h e  reaction 

of monofunctional silanes (e.g. ,  tr imethylchlorosilaine) with the 

s i l i c a  microparticle;  since each molecule of the s i l ane  reagent 

reacts  with only one s i l ano l  group,a monomeric reversed-phase i s  

produced. 

difunctional o r  t r i func t iona l  s i l an iz ing  reagent; the r e su l t i ng  

product i s  a cross-linked polymeric mversed-phase. 

can be used t o  produce bonded phases which d i f f e r  i n  the s i t e  of 

the linkage(27) ; however, most commercial reversed-phases a r e  pre- 

pared a s  shown i n  Figure 5. 

The bulk-type material  is  prepared from s i l i c a  using a 

Other reagents 

Due t o  the differences between the surface s t ruc tu re  of the 

reversed-phases, re tent ion cha rac t e r i s t i c s  can vary widely. A 

major d i f f i c u l t y  i n  es tabl ishing the role  of the s ta t ionary phase 

i n  the chromatographic process is due t o  the lack of de t a i l ed  
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a)  Monofunctional 

b) Bifunctional 

D 
Si\ 
0 

E 
- Si-OH X 

.- Aeflux 
\ /R1 Dry solvents ~ 

Si-OH X R 2  
Si 
II 0 

c) Trifunctional (in dry solvents) 

I 
Si 
‘0 

D - Si-OH X 

f i  Si-OH X’ \X 

\ /R1 Dry solvents ’ \x 
Reflux 

+ si .- - - I Si 

I 

c) Trifuntional (solvent with protic impurities) 

SI 

1 

D P 
- Si-OH X R 1  

iii Si-OH X’ \X 

& 
,I 1 t \Si/ .-. - 

si’ OH 

I 
D 
I 

I 
Si-Rl 

I Si 

1 -O-si-R1 
0 9 

-O-si-R1 

c, 

1 

X = CI or CH30 
R 1  = Organic moiety 

FIGURE 5 

Schematic representation for the preparation of bonded reversed- 

phases. Reproduced from E .  Grushka and E . J .  Kikta, Anal. Chem., 

- 49, 1004A (1977) .  
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REVERSED-PHASE RETENTION 193 

s p e c i f i c a t i o n s .  The s e l e c t i v i t y  d i f f e r e n c e s  observed i n  p r a c t i c e  

can  b e  a t t r i b u t e d  t o  many factors p e r t a i n i n g  t o  t h e  s t a t i o n a r y  

phase.  These f a c t o r s  inc lude :  

1. P a r t i c l e  s i z e  and shape.  

2 .  P o r o s i t y ,  s p e c i f i c  s u r f a c e  area and pore s i z e  d i s t r i b u t i o n s  

o f  the unbound s i l i ca .  

3. Chemical n a t u r e  o f  t h e  bonded hydrocarbon. 

4. The c o n f i g u r a t i o n  o f  the hydrocarbons.  

5 .  The s u r f a c e  c o n c e n t r a t i o n  o f  a c c e s s i b l e  s i l a n o l  and s i lo-  

xane groups.  

6 .  Sur face  c o n c e n t r a t i o n  o f  bonded hydrocarbon. 

The i n f l u e n c e  o f  these f a c t o r s  h a s  been reviewed by Halasz . (58) 

I n  a l l  o f  t h e  proposed r e t e n t i o n  mechanisms, s o l u t e  r e t e n t i o n  h a s  

been r e l a t e d  i n  some way t o  t h e  carbon c o n t e n t  of t h e  s t a t i o n a r y  

phase.  The most c o n t r o v e r s i a l  a s p e c t  relates to  t h e  e f f e c t  o f  

a l k y l - c h a i n  l e n g t h .  With l o n g e r  c h a i n s ,  t h e  amount of o r g a n i c  con- 

t e n t  p e r  u n i t  column volume i n c r e a s e s ,  g e n e r a l l y  r e s u l t i n g  i n  in-  

c r e a s e d  r e t e n t i o n .  However, c h a i n  l e n g t h  a l o n e  h a s  no s p e c i f i c  

r o l e  ( 3 7 t 4 5 r 5 7 )  ; t h e  d i f f e r e n t  s e l e c t i v i t i e s  observed w i t h  t h e  vari- 

ous l i n e a r  a lkyl -cha in  phases  are due t o  hydrocarbonaceous s u r f a c e  

area and t h e  a c c e s s i b i l i t y  o f  r e s i d u a l  s i l a r ~ o l s ( ~ ~ )  . 
t o  Table  111, it can b e  seen  t h a t  t h e  o c t y l s i l i c a  column (C)  more 

s t r o n g l y  r e t a i n e d  p u r i n e  t h a n  one o f  t h e  o c t a d e c y l s i l i c a  columns 

(column A) due t o  h i g h e r  hydrocarbonaceous s u r f a c e  area. I n  addi-  

t i o n ,  c e r t a i n  s e l e c t i v i t y  d i f f e r e n c e s  can b e  seen w i t h  the t r imethyl -  

s i l i c a  column (D) which is probably due t o  i n t e r a c t i o n s  w i t h  resi- 

dual  s i l a n o l s .  According t o  t h e  r e c e n t  work by H ~ r v a t h ' ~ ~ ) ,  the 

good c o r r e l a t i o n  between t h e  se lec t iv i t ies  o f  columns A and B i s  

due to  homoenergetic behavior .  Columns A and C are s a i d  t o  be  

homeoenerget ical ly  r e l a t e d .  The d i f f e r e n c e s  between A and D are 

due t o  h e t e r o e n e r g e t i c  behavior .  

R e f e r r i n g  

Zakar ia  and Brown(59) r e c e n t l y  s t u d i e d  the effects of t h e  

s t a t i o n a r y  phase on p u r i n e  and pyr imidine  r e t e n t i o n ;  t h e  r e s u l t s  

o f  t h i s  i n v e s t i g a t i o n  c o r r o b o r a t e s  o t h e r  r e s e a r c h  i n  this 
area (39-43' 51' 56-58). As w a s  expected from t h e  solvophobic  
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ASSENZA AND BROWN 194 

theory,  nucleoside and base r e t en t ion  w a s  g r e a t e r  on packings with 

h igher  hydrocarbonaceous sur face  a rea .  S e l e c t i v i t y  d i f f e rences  

were a l s o  observed with t h e  oc t adecy l s i l i ca  packings having d i f -  

f e r e n t  sur face  coverages. Moreover, r e t e n t i o n  ou t s ide  of t h e  solvo- 

phobic theory w a s  found f o r  nuc leo t ides  chromatographed on t h e  

phases wi th  lower hydrocarbonaceous sur face  a rea ;  methanol en- 

hanced t h e  s i l a n o p h i l i c  i n t e r a c t i o n s  which i n  tu rn  a l t e r e d  t h e  

s e l e c t i v i t i e s  f o r  compounds with e lec t ron- r ich  s u b s t i t u e n t s .  

2 .  Mobile Phase Ef fec t s  

a .  pH 

The e f f e c t s  of  mobile phase pH on pur ine  and pyrimidine 

separa t ions  have been s tud ied  i n  detail (17,49,51,60,61).  Figure 

i l l u s t r a t e s  t h e  change i n  r e t en t ion  f o r  nucleosides and bases  with 

pH. I n  addi t ion ,  the  e f f e c t  o f  pH on some nucleo t ides  i s  shown 

(Figure 7 ) .  As can be seen ,  t h e  compounds which can ion ize  over  

t he  pH range o f  2-7 d isp lay  dramatic changes i n  t h e i r  capac i ty  

f a c t o r s  when the  pH is near  t he  pK 

behavior can be  adequately described by a simple equation. 

monoprotic ac id  t h e  r e l a t i o n s h i p  i s  given by 

Horvath (49) found t h a t  t h i s  

For a 
a*  

Ka 
[H+l 

Ka 

[H+l 

k; + ki 
k' = 

1 + -  

[H+l 

K, 

and f o r  a base by 

k; + k; - 
(5) k' = 

[H+l  

Ka 

l + -  

(4) 

where k; i n  equation 4 is the capac i ty  f a c t o r  of t h e  nega t ive ly  

charged so lu t e  and i n  equation 5 f o r  t h e  p o s i t i v e l y  charged so lu t e ;  

a l l  o the r  terms have t h e i r  usua l  meaning. 

According t o  equations 4 and 5, t h e  capac i ty  f a c t o r  changes 

with pH i n  a sigmoidal fashion. The midpoint of the  t r a n s i t i o n  

occurs  a t  a pH equal  t o  t h e  apparent pK of the compound. Figure 

8 shows the b a s i c  behavior of Cyt; also shown is  t h e  change i n  
a 
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1.- 7.5, 11. 0.8 

3.- 9.8 1,4.15 
4. Gus 9.6, 12.4 0, 3.2 50. 
5 . k  9.5, 13 - 

2 . w  8.9, 12. 2.0 

EFFECT OF OH 

V;C 30. 

20- 

10- 

195 

60 

50 

40 

V; 30 

20 

10 

I-* 401 

NUCLEOSIDES 

PK, PKb 

1.- 5.7,- 13.0 ~2.5 
2 . m  8.8, 12.3 1.2 

4.- 9.2, 12.4 1.6 
3 . m  12.5 3.5 I - / 5 . m  8.8 

I 
2.8 3.8 4.8 5.8 6.8 2.8 3.8 4.8 5.8 6.8 

pH OF ELUENT 

FIGURE 6 

Effect  of pH of the mobile phase on the retent ion of nucleosides 

and bases on a reversed-phase column. The ionic  strength was held 

constant by the addition of K C 1  t o  the 0.01 M phospate buffer .  

Column: pondapack C18. Flow: 1.5 ml/min. Temperature: am- 

bient .  Frcm reference #17. 

solute charge over the pH range. As a ru l e  of thumb, the r a t i o  of 

the capacity f ac to r  i n  the neutral  s t a t e  (k:) t o  the ionic  s t a t e  

(k') i s  approximately 3-4 f o r  the purines and pyrimidines. In 

addition, a p l o t  of In  k '  versus pH is found t o  be l i nea r  over the 

pH range of pKa t 1.5. 

2 

From these relat ionships ,  it is  readi ly  possible t o  optimize 

separations from reported values of pKa (corrected fo r  tempera- 

t u re  o r  ionic  s t r eng th ) ;  Gehrke(60) has a l s o  shown t h a t  methanol 
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XMP *- k 

2.20 2.95 3.35 4.05 4.75 5.50 6.30 

pH (0.02 F KH2P04) 

F I G U R E  7 

Effect of pH on the retent ion of nucleotide monophosphates. 

t i ons  are a s  i n  Fig.  6 ,  except the column was a Partisil-ODs. 

From reference #51. 

Condi- 

does not appreciably change the pH relat ionship.  I n  addition, 

solute  pKa can be determined from chromatographic behavior (49,62)  

b.  Organic Modifier 

The retent ion behavior of nucleic acid components i n  the 

presence of increasing concentrations of  organic modifier i s  typi- 
cal  o f t h a t  expected from the solvophobic theory; the capacity fac- 

t o r  decreases with increasing organic content of the mobile phase. 

B o t h  the surface tension and d i e l e c t r i c  constant of the hydro- 

organic mobile phase d i c t a t e  the retent ion of purines and pyrimi- 

dines i n  solvophobic chromatography. 

In accord with the solvophobic model, an empirical re la t ionship 

which great ly  s implif ies  the prediction of the e f f e c t  of solvent 

composition on retent ion i s  given by (63,64) 
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0.7 

0.5 
k' 

0.3 

0.1- 

197 

CYTOSINE 

/- 

a 

FIGURE 8 

E f f e c t  o f  p H  on Cyt ( u p p e r ) .  Also shown i s  the relative change 

i n  the charge  of t h e  molecule .  

I n  lower graph a+ is  the r a t i o  o f  t h e  c y t o s i n e  molecules  i n  t h e  

p o s i t i v e l y  charged s ta te  t o  the t o t a l  number of c y t o s i n e  molecules ,  

and aN i s  the number of  c y t o s i n e  molecules  i n  t h e  n e u t r a l  s ta te  t o  

the to ta l  number of c y t o s i n e  molecules .  From Reference #51. 

Condi t ions  are as i n  F i g .  7 .  

where k '  is the c a p a c i t y  f a c t o r  i n  the t o t a l l y  aqueous e l u e n t  and 

m is t h e  s l o p e  of the I n  k' v e r s u s  t h e  c o n c e n t r a t i o n  (C) of o r g a n i c  

m o d i f i e r  i n  the mobile phase.  F igure  9 shows this r e l a t i o n s h i p  f o r  

p u r i n e s  and pyr imidines .  Hartwick and co-workers (63'64) used equa- 

t i o n  6 t o  p r e d i c t  p u r i n e  and pyr imidine  r e t e n t i o n  i n  both  i s o c r a t i c  

and g r a d i e n t  e l u t i o n .  Genera l ly ,  the magnitude of t h e  s l o p e  can 
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3.0 

2.5 

2.0 

1.5 

k 
- 1.0 
E 

0.50 

0.00 

-0.50 

.1.0 
t 

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10. 

%METHANOL 

FIGURE 9 

The e f f e c t  of methanol concentration i n  the  mobile phase on reten- 

t i on .  Tyr: ty ros ine ,  Uric A , :  u r i c  acid.  Column: P a r t i s i l -  

ODs. Flow: 1.0 ml/min. Temperature: ambient. From reference 

# 6 3 .  

be estimated from p a r t i t i o n  coe f f i c i en t s .  In  addi t ion ,  t he re  is  a 

l i n e a r  r e l a t ionsh ip  between In  k' and m; so lu t e s  which a r e  more 

s t rongly  r e t a ined  with the nea t  aqueous e luen t s  a re  a f f ec t ed  t o  a 

g r e a t e r  ex ten t  by changes i n  methanol concentration leading t o  

s teeper  slopes (60'63'64). 

the  addi t ive  e f f e c t s  of t h e  subs t i t uen t s  on m ( 5 3 r 5 4 )  ; Gehrke 

has  i n d i r e c t l y  noted these  subs t i t uen t  e f f e c t s .  

W 

Moreover, it is  poss ib le  t o  determine 
(60) 

Anomalous r e t en t ion  is  noted f o r  n ~ c l e o t i d e s ' ~ ~ ) .  A t  a c i d i c  pH, 

nucleotide r e t en t ion  increased with increas ing  organic conten ts  
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/" 

I 

0 10 20 40 60 0 10 20 40 60 

46 ORGANIC MODIFIER (- METHANOL, ----ACETONITRILE ) 

in 0.02 F KH2P04 (pH 2.95) 

F I G U R E  10 

Anomalous behavior of nucleotides with increasing organic modifier . 
Conditions as  i n  Fig. 7. From reference #51. 

i n  the mobile phase (Figure 1 0 ) .  This contradiction t o  the  solvo- 

phobic theory suggests s i l anoph i l i c  i n t e rac t ions  ( 4 2 )  . 
a t  pH values c lose t o  neu t r a l i t y  the nucleotides are seen t o  behave 

l i k e  the nucleosides and bases (Figure 11). 

However, 

c .  Ionic Strength 

Changing the ion ic  s t rength of the mobile phase has l i t t l e  

e f f e c t  on the retent ion of nucleosides and bases(51861). 

the ion ic  s t rength e f f e c t  is more pronounced i n  the case of ribo- 

nucleotides a t  pH where the  compound is ionized. Figure 12 shows 

the observed e f f e c t  of i on ic  s t rength on nucleotide retent ion.  

With increasing ion ic  s t rength the ribonucleotide tr iphosphates,  

which have the l a r g e s t  negative charge, are subject t o  the g rea t e s t  

However, 
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In 

11 
0. 

Y 

‘x 

IN 
4 

a 

IC 

-0 

-1 

10 20 40 60 

% METHANOL in 0.02 F KH2P04 (pH 5.5 ) 

FIGURE 11 

Solvophobic behavior  o f  n u c l e o t i d e s  (and corresponding nuc leos ide  

and base)  w i t h  i n c r e a s i n g  methanol c o n c e n t r a t i o n  i n  n e a r  n e u t r a l  

e l u e n t .  Condi t ions  as i n  F i g .  7. From r e f e r e n c e  #51. 
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2E 

1E 

K' 

5 

2.E 

2! 

I f  

K' 

f 

2.f 

( " 0.021 0.041 0.051 0.091 0.101 

ATp\ 

0.021 0.041 0.051 

FIGURE 1 2  

Effect  of i on ic  s t rength on nucleotide retent ion.  Condition as  i n  

Fig. 7. From reference #51. 

decrease i n  re tent ion.  The data i n  Figure 1 2 ,  however,are not i n  

t o t a l  agreement with t h a t  observed by Taylor, e t  a1(61) ; it is be- 

l ieved t h a t  the differences a r i s e  from the use of d i f f e r e n t  re- 

versed-phases. 
( 6 6 )  Taylor (61) , Christman (65) and Whitehouse and Greenstock 

have taken advantage of the ion ic  s t rength e f f e c t  t o  optimize 
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202 ASSENZA AND BROWN 

nuc1eoti.de separations.  However, it should be noted t h a t  applica- 

t ions which call fo r  the use of high concentrations of phosphate 

buffer  can damage the column; care should therefore be taken not t o  

leave the s ta t ionary phase exposed t o  the s a l t s  for  prolonged 

periods.  

3 .  Temperature Effects  

Column temperature is a parameter which has received l i t t l e  

a t t en t ion .  

ambient temperatures. 

temperature on the separation of nucleotides i n  ion-exchange HPLC; 

Gehrke, e t  a1(60) b r i e f l y  examined the e f f e c t  of temperature on 

RPLC separations of nucleosides. However, temperature i s  an im- 

The vas t  majority of RPLC separations a re  conducted a t  

Horvath, e t  al") studied the e f f e c t  of 

portant  parameter i n  terms of r e p r ~ d u c i b i l i t y ' ~ ~ )  , increased e f f i -  

ciency(68) and optimization (68,691 

The most important aspect of temperature i n  purine and pyrimi- 

From dine separation is  i t s  e f f e c t  on s e l e c t i v i t y  and resolution. 

equation 1, the following expression f o r  re tent ion can be derived 

I n  k '  = AH/RT + AS/R + In 0 (7)  

where AH and AS a re  the enthalpy and entropy changes associated 

with the retent ion process. Equation 7 predicts  a l i n e a r  relation- 

ship between In k '  and 1/T; the slopes of the van ' t  Hoff p l o t s  

give the enthalpy term while the intercept  is the sum of the entropy 

and phase-ratio terms. I n  addition, the relat ionship can a l s o  be 

given by 

( 8 )  
nT k '  = kge 

Where k; is the capacity factor  a t  some standard s t a t e  and n i s  the 

slope of the In k' versus T p lo t .  

Horvath and c o - ~ o r k e r s ' ~ ~ )  demonstrated the concomitant depend- 

ence of solute  re tent ion on column temperature and solvent composi- 

t ion.  The enthalpy change experimentally deduced was found t o  be 

compensated by an entropy change indicative of a constant mechanism 

over a r e l a t ive ly  wide range of temperatures and organic modifier 

concentrations. The following equation, 
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REVERSED-PHASE RETENTION 203 

where p i s  the  compensation temperature and AG i s  the  change i n  the 

Gibbs f r e e  energy, shows t h a t  t h e  value of t h e  compensation tempera- 

t u r e  i s  cons tan t ;  usua l ly  600-700 OK f o r  reversed-phase systems 

which a r e  described by the solvophobic rmdel. The dependence of k' 

on temperature and so lvent  composition i s  given i n  equation 10: 

T 

P I n  k' = AIC (1 - -) + AZ/T + A,, (10) 

where C i s  the concentration o f  the  organic modifier.  The terms 

A1, A2, and A 3  represent  empirical  constants:  

A1 = mAHc(0)/Rp 

A3 = AS(0) + I n  p 
= - A H ~ ( O ) / R  or -[AH ( 0 )  . +  AHn(0)]/R A2 

where AH ( 0 )  and AS(0) a r e  the  enthalpy and entropy change f o r  re- 

ten t ion  i n  nea t  aqueous e luen t s  and the cons tan t  m again r e f e r s  to  

the  s lope  of In  k' versus C p l o t s .  In  additior., where the  enthalpy 

i s  not  f u l l y  compensated,a cor rec t ion  f a c t o r  AH ( 0 )  is used and has  

been found t o  be cons tan t  f o r  the  so lu t e s  and chromatographic sys- 

tem inves t iga ted  . 

C 

n 

(69) 

The s igni f icance  of these re l a t ionsh ips  represent  a major s t e p  

forward i n  e s t ab l i sh ing  a rigorous treatment of reversed-phase 

r e t en t ion .  A f ind ing  t h a t  t h e  A 

with  so lu t e  s t r u c t u r e  (69) ind ica ted  t h a t  they were sub jec t  t o  

l i n e a r  f r e e  energy r e l a t ionsh ips ;  t h i s  has been subsequently ver i -  
f i ed  ( 5 3 r 5 4 ) .  

sh ips  is t h a t  a l i b r a r y  of pe r t inen t  subs t i t uen t  cons tan ts  can be  

e s t ab l i shed  and used t o  p r e d i c t  reversed-phase r e t en t ion  based on 

so lu t e  s t r u c t u r e  a p r i o r i .  Thus, t he  subs t i t uen t  e f f e c t s  noted i n  

Table I11 can be expanded t o  account f o r  temperature and methanol 

e f f e c t s ;  research along these  l i n e s  have r ecen t ly  been conducted i n  

ou r  labora tory .  Moreover, inc lus ion  of p H  and bu f fe r  e f f e c t s  i n  

terms of t he  subs t i t uen t  constants'") should a l s o  be poss ib le  f o r  

t h e  purines and pyrimidines. 

A Z ,  and A3 terms vary l i n e a r l y  1' 

The importance o f  t he  l i n e a r  f r e e  energy r e l a t ion -  
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204 ASSENZA AND BROWN 

Another impor tan t  aspect of  t h e  tempera ture  r e l a t i o n s h i p  w a s  

demonstrated by Dias io  and W i l b ~ r n ‘ ~ ~ ) .  

ambient column temperature  t o  improve t h e  s e p a r a t i o n  o f  f luoroura-  

c i l  m e t a b o l i t e s .  

The a u t h o r s  used sub- 

4. Ion-Pair ing 

The use of  ion-pa i r ing  i n  RPLC h a s  extended t h e  u t i l i t y  of  

t h e  method t o  i n c l u d e  s imultaneous s e p a r a t i o n  o f  i o n i z e d  and non- 

i o n i z e d  compounds (20-22). 

phase ion-pa i r ing  i s  s u b j e c t  t o  cont roversy ,  three d i s t i n c t  views 

have been proposed. The f i r s t  model s u g g e s t s  t h e  formation o f  ion- 

p a i r s  i n  the mobile phase ( 7 2 r 7 3 )  prior t o  i n t e r a c t i o n  w i t h  t h e  

s t a t i o n a r y  phase.  The second view s t i p u l a t e s  a n  ion-exchange mech- 

anism(20)  where t h e  ion-pa i r ing  a g e n t s  i n  the mobile phase t r a n s -  

form t h e  s t a t i o n a r y  phase i n t o  a n  ion-exchanger. The t h i r d  approach 
(74) s u g g e s t s  tha t  t h e  r e t e n t i o n  mechanism is due t o  i o n - i n t e r a c t i o n  . 

With t h i s  model, i o n - p a i r s  are n o t  formed i n  t h e  mobile phase; 

r a t h e r  it i s  assumed tha t  t h e  l i p o p h i l i c  i o n s  are i n  a dynamic 

equi l ibr ium.  This  r e s u l t s  i n  t h e  formation o f  a n  e lec t r ica l  double 

l a y e r  on t h e  hydrocarbonaceous s t a t i o n a r y  phase.  Thus, r e t e n t i o n  

is based on a n  e lectrostat ic  a t t r a c t i o n  due t o  t h e  s u r f a c e  charge 

d e n s i t y  o f  the ion-pa i r ing  i o n s  and from a s o r p t i o n  e f f e c t  w i t h  t h e  

s t a t i o n a r y  phase.  

Hoffman and Liao  (20) f i r s t  used an ion-pa i r ing  a g e n t  f o r  t h e  

Although t h e  e x a c t  mechanism o f  reversed-  

s e p a r a t i o n  o f  major r i b o n u c l e o t i d e s  w i t h  an o c t a d e c y l s i l i c a  

column. Although complete r e s o l u t i o n  of a l l  compounds w a s  n o t  

p o s s i b l e  (Fig.  13), t h e  p o t e n t i a l  and u t i l i t y  o f  t h e  method w a s  

demonstrated.  Subsequent work by Darwish and P r i c h a r d ( 2 2 )  w i t h  

more e f f i c i e n t  columns g r e a t l y  improved these s e p a r a t i o n s .  An 

i n t e r e s t i n g  a p p l i c a t i o n  o f  ion-pa i r ing  w a s  g iven  by E r h l i c h  and 

E r h l i c h  (75)  f o r  the s e p a r a t i o n  o f  DNA b a s e s  (Figure 1 4 ) .  

t i o n ,  a new ion-pa i r ing  technique ,  zwit ter ion-pair(21!  w a s  shown 

t o  b e  very f l e x i b l e  and h a s  g r e a t  p o t e n t i a l  f o r  f u r t h e r  develop- 

ment. 

I n  addi-  

A l s o  c l a s s i f i e d  .as a n  ion-pa i r ing  t y p e  o f  technique  i s  t h e  use 

of metal i o n s  t o  enhance s e p a r a t i o n s  and a l t e r  e l u t i o n  o r d e r s .  
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D 
C 

e 
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0 12 24 36 48 

Minutes 

FIGURE 1 3  

Ion-pa i r ing  s e p a r a t i o n  of n u c l e o t i d e s .  Mobile phase g r a d i e n t :  (A)  

0.025 M tetrabutylammonium hydrogen s u l f a t e  and  0.050 M KH2P04 p l u s  

0.080 M N H 4 C l  a t  pH 3.9; (B) 0.025 M t e t r a b u t y l  ammonium hydrogen 

s u l f a t e  and 0.10 M KH2P04 p l u s  0 .2  M NH4C1 a t  p H  3.4 i n  30% metha- 

nol. Opera t ing  c o n d i t i o n s :  40-min g r a d i e n t  program (concave-8) 

a t  1.0 ml/min. From r e f e r e n c e  #20. 

Chow and G r ~ s h k a ' ~ ~ )  used Mg2+ i n  t h e  mobile phase t o  d r a m a t i c a l l y  

improve t h e  s e p a r a t i o n  of n u c l e o t i d e s ,  n u c l e o s i d e s  and b a s e s .  

Later,  Horvath, e t  a l ( 7 7 )  r e p o r t e d  t h e  use of RPLC t o  measure t h e  

a s s o c i a t i o n  c o n s t a n t s  o f  t h e  metal b i n d i n g  t o  n u c l e o t i d e s .  

5 .  Gradien t  E l u t i o n  

A d e t a i l e d  t r e a t m e n t  o f  t h e  use o f  g r a d i e n t  e l u t i o n  i n  the 
(63,641. Using s e p a r a t i o n  of n u c l e o s i d e s  and bases h a s  been g iven  

t h e  r e l a t i o n s h i p  shown i n  e q u a t i o n  6 ,  Hartwick, s s (63) d e t e r -  

mined tha t  nuc leos ide  and base  s e p a r a t i o n s  could  b e  opt imized  sys- 
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Time ( m i d  

FIGURE 14 

Separation of nucleic acid bases.  Peak Ident i t ies :  1 .  Ura, 

2 .  5-M-Cytl 3 .  Gual 4 .  Cyt, and 5 .  Thy. A l l  about 200-pmol. The 

separation was obtained with a C column and an eluent containing 18 
5-mM heptane sulfonate and 2.5-mM potassium phosphate (pH 5 . 6 ) .  

Flow 2 ml/min. From reference #75.  
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B = 0.50 

.i - 

r-- ~- 

0 5 lb 15 20 

TIME (minutes) 

FIGURE 15 

Chromatograms of the compounds i n  Fig.  9 showing the effect of the 

gradient slope ( %  methanol per minute). 

From reference #63. 

Conditions as i n  Fig.  9. 
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FIGURE 16 

Maximized g r a d i e n t  s e p a r a t i o n  o f  29 n u c l e i c  a c i d  components and 

o t h e r  b i o l o g i c a l l y  impor tan t  compounds. Column: uBondapak C 

Chromatographic c o n d i t i o n s :  Primary e l u e n t -  0.01 M KH PO (pH 5 . 6 ) .  

Secondary e l u e n t -  60% methanol (v/v) . Flow- 1 . 5  ml/min. Gradient-  

l i n e a r  0.69% methanol/min. From r e f e r e n c e  #64. 
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FIGURE 1 7  

Reversed-phase i s o c r a t i c  s e p a r a t i o n  of a mixture  of 16 n u c l e o s i d e s .  

Column: uBondapak C18. E luent :  0.01 M NH4H2P04  (pH 5.1) i n  60% 

methanol (v/v) . Flow: 1 .0  ml/min. From r e f e r e n c e  #78. 
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FIGURE 18 

Step-gradient separa t ion  of nucleosides i n  u r ine .  Column: ponda -  

pak C18 (two i n  s e r i e s ) .  

2.5% methanol. B- 0.01 M NH H PO (pH 5.1) i n  8.0% methanol. 4 2  4 
Flow: 1.5 ml/min. Temperature: 35OC. Upper t r a c e  i s  taken a t  

254-m, lower t r a c e  i s  280-nm. From reference  #60. 

Eluents: A- 0.01 M NH4H2P04 (pH 5.3) i n  
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t e m a t i c a l l y  through the s e l e c t i o n  o f  an a p p r o p r i a t e  g r a d i e n t  s l o p e  

(F igure  1 5 ) .  In  a d d i t i o n ,  this method was la te r  used(64)  t o  opti-  

mize the s e p a r a t i o n  o f  n u c l e i c  a c i d  components and o t h e r  b i o l o g i c a l -  

l y  impor tan t  compounds (F igure  1 6 ) .  

While g r a d i e n t  e l u t i o n  e x t e n d s  t h e  range of t h e  number of 

compounds which can b e  analyzed i n  a g iven  p e r i o d  o f  t i m e ,  t h e  

method is  n o t  as s e n s i t i v e  as i s o c r a t i c  e l u t i o n .  I n i t i a l l y ,  

Gehrke and co-workers (78) used isocrat ic  e l u t i o n  t o  s e p a r a t e  nuc- 

l e o s i d e s  (F igure  1 7 ) ;  however, they l a t e r  found(6") t h a t  t h e  system 

could be improved w i t h o u t  compromising s e n s i t i v i t y  wi th  t h e  use of  

a s t e p - g r a d i e n t  (F igure  18). 

phase"'), g r a d i e n t  e l u t i o n  methods appear  t o  b e  needed less f r e -  

q u e n t l y .  For example, a r a p i d  method us ing  an aqueous e l u e n t  con- 

t a i n i n g  methanol, a c e t o n i t r i l e  and t e t r a h y d r o f u r a n  was developed 

f o r  t h e  s e p a r a t i o n  of c a f f e i n e  and i t s  metabolites i n  b i o l o g i c a l  

samples . 

Through the use o f  m u l t i p l e  o r g a n i c  m o d i f i e r s  i n  t h e  mobile 

(80) 

111. CONCLUSION 

Reversed-phase HPLC is  a powerful  a n a l y t i c a l  t echnique  f o r  the 

s e p a r a t i o n  and measurement o f  b i o l o g i c a l l y  impor tan t  compounds. 

Within t h e  l a s t  5-6 y e a r s ,  the a p p l i c a t i o n  o f  RPLC i n  t h e  a n a l y s i s  

of  n u c l e i c  a c i d  components h a s  grown tremendously. Recent a p p l i -  

c a t i o n s  have inc luded  t h e  a n a l y s i s  o f  tRNA hydro lysa tes (81) ,  DNA 
(84,85)  h y d r o l s a t e s  , c y c l i c  n u c l e o t i d e s  (83), o l i g o n u c l e o t i d e s  , 

and enzymes(86). Moreover, RPLC h a s  been shown to  have great po- 

t e n t i a l  i n  t h e  f i e l d  o f  c l i n i c a l  chemistry,  e s p e c i a l l y  i n  drug 

monitor ing and e a r l y  d e t e c t i o n  o f  d i s e a s e  states (25,28) 

Recent  r e s e a r c h  h a s  shown t h e  need f o r  new models o f  t h e  re- 

t e n t i o n  p r o c e s s  which accounts  f o r  t h e  active p a r t i c i p a t i o n  o f  the 

s t a t i o n a r y  phase.  Despite t h e  l a c k  of  a c lear  unders tanding  of the 

r e t e n t i o n  mechanism, e m p i r i c a l  r e l a t i o n s h i p s  have been employed 

with e x c e l l e n t  r e s u l t s .  I n  a d d i t i o n ,  new approaches i n  t h e  simul- 

taneous o p t i m i z a t i o n  o f  s e v e r a l  chromalographic  parameters  w i l l  

g r e a t l y  reduce t h e  t i m e  r e q u i r e d  t o  develop s e p a r a t i o n s  . (87) 

The fact t h a t  t h e  r e t e n t i o n  p r o c e s s  is based  on l i n e a r  free 

energy r e l a t i o n s h i p s  w i l l  r e s u l t  i n  f u r t h e r  a p p l i c a t i o n s  i n  the 
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d e t e r m i n a t i o n  o f  physicochemical  d a t a .  The use o f  RPLC t o  e v a l u a t e  

p u r i n e  oc tanol -water  p a r t i t i o n  c o e f f i c i e n t s  h a s  been . repor ted  

The b iomedica l  s i g n i f i c a n c e  i n  t h i s  area a l o n e  i s  v a s t .  
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